Problem A. 19

Find the eigenvalues and eigenvectors of the following matrix:

$$
M=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Can this matrix be diagonalized?

Solution

The aim here is to solve the eigenvalue problem for the given matrix.

$$
\mathrm{Ma}=\lambda \mathrm{a}
$$

Bring λa to the left side and combine the terms.

$$
\begin{equation*}
(M-\lambda I) a=0 \tag{1}
\end{equation*}
$$

Since $a \neq 0$, the matrix in parentheses must be singular, that is,

$$
\begin{gathered}
\operatorname{det}(M-\lambda \mathbf{I})=0 \\
\left|\begin{array}{cc}
1-\lambda & 1 \\
0 & 1-\lambda
\end{array}\right|=0 \\
(1-\lambda)^{2}=0 \\
\lambda=1 .
\end{gathered}
$$

To find the corresponding eigenvector, plug it back into equation (1).

$$
\begin{aligned}
(\mathrm{M}-\lambda \mathrm{I}) \mathrm{a} & =0 \\
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{a_{1}}{a_{2}} & =\binom{0}{0}
\end{aligned}
$$

Turn this matrix equation into a system of equations and solve for either a_{1} or a_{2}.

$$
\begin{gathered}
\left.\begin{array}{c}
a_{2}=0 \\
0=0
\end{array}\right\} \\
\mathrm{a}=\binom{a_{1}}{a_{2}}=\binom{a_{1}}{0}
\end{gathered}
$$

Therefore, the eigenvector corresponding to $\lambda=1$ is

$$
\mathrm{a}=a_{1}\binom{1}{0},
$$

where a_{1} is an arbitrary constant (due to the fact that the eigenvalue problem is homogeneous). Since M is a 2×2 matrix and there's only one eigenvector, the S^{-1} matrix can't be constructed, meaning M can't be diagonalized.

